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UNIFORM EMBEDDINGS OF BANACH SPACES* 

BY 

ISRAEL AHARONI 

ABSTRACT 

It is proved that for 1 _-<p _-<2, Lp(0, 1) and l~ are uniformly equivalent to 
bounded subsets of themselves. It is also shown that for 1 _-< p _-< 2, 1 _- q < 00 Lp 
is uniformly equivalent to a subset of lq. 

Two metric spaces X, Y are called uniformly equivalent, if there is a map T 

from X onto Y, such that T and T- '  are uniformly continuous. Very little is 

known about the theory of the uniform topology of Banach spaces. For example, 

it is still an open problem whether two uniformly equivalent Banach spaces are 

isomorphic * ([2] p. 283, [6] p. 1, and [8] p. 284). A problem of another type deals 

with embeddings. In [7] Gorin raised the problem whether 12 is uniformly 

equivalent to a bounded subset of itself (see also [3] p. 48). This problem can 

naturally be asked for a general Banach space. In [1] it was proved that every 

separable Banach space containing Co is uniformly equivalent to a bounded 

subset of itself. Here we prove that for 1 -< p --< 2, Lp(0, 1) (and lp) is uniformly 

equivalent to a bounded ~ b s e t  of itself. This provides, in particular, an 

affirmative answer to the question of Gorin, mentioned above. An interesting 

consequence of our theorem is that for 1 =< p =< 2, 1 =< q < ~, Lp(0, 1) is uniformly 

equivalent to a subset of lq. This answers affirmatively a part of a problem raised 

by Enflo [6] p. 2. 

Our main result is the following theorem: 

THZO~EM 1. There is a map T: L1(0,1)---~L1(0,1) satisfying: 

(a) For every f E L~, II Tfl[ = 1. 

(b) For every f, g E L~ with IIf-  g II---- 1, we have 

IIf-  g 11/3 -<-II Tf- Tg II =< 21If- g II. 

'This is a part of the author's Ph.D. thesis prepared at the Hebrew University of Jerusalem 
under the supervision of Professor J. Lindenstrauss. The author wishes to thank Professor 
Lindenstrauss for his guidance. 

�9 See Added in proof. 
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(c) For every f, g E L, with Ilf - g I1--> 1, w e  have II Tf- Tg II ~ 

For the proof of Theorem 1, it is more convenient to work with non-negative 

functions. We state, therefore, the following trivial proposition. 

PROPOSITION 2. There is an isometric embedding U of L,(0, 1) into L ~'(0, 1) = 

{f ~ L, lf>-O}. 

We shall need the following. 

LEMMA 3. There is a dense subset M of L:(O, l), and a map V: M---* P(R)  

( = The set of all subsets of the reals) so that: 

(a) For every f E M, V(f)  is measurable, and I~(V(f))= e IIJ'll (where i ~ is the 

usual Lebesgue measure, and IIfll is the L~-norm of f). 

(b) For every f, g E M, f a g  = min{f ,g}E M and V( f  A g)= V ( f ) n  V(g). 

We show first how to derive Theorem 1 from Proposition 2 and Lemma 3. We 

shall give, later on, the proofs of Proposition 2 and Lemma 3. 

PROOF OF THEOREM 1. We define a map H from L:(0,  1) into L~(R), and 

prove that H satisfies conditions (a), (b) and (c) of the theorem. Then, we use the 

isometric imbedding U defined by Proposition 2, and the known fact that there 

is an isometry G of L~(R) onto L~(0,1), and define T: L~(0,1)---* L~(0,1) by 

T =  G oHo U. T is the desired map. 

Let M be the dense subset of L f(0, 1) and let V be the map defined by Lemma 

3. We define a map H: M---~LI(R) by 

Xvff) = Xvff) 
H ( f )  = IlXv~,)ll e "r" 

where XA denotes the characteristic function of the set A. From the definition, it 

follows that H satisfies the following: 

(a) For every f E M, H( f )  => 0. 

(1) (b) For every f E  M, IIn(f)ll = 1 

(c) For every f ,g  E M 

= X vf f )nv(g)  = X v($^~) 
(2) Hf ^ Hg max{ellt,, ellSll } em,,llltll.llsll ~ . 

Now take f, g E M with [If - g II--< 1. We assume without loss of generality that 

Ilfll--> IIg [1. 
We have: 



176 

(3) 

hence 

(4) 

I. A H A R O N I  

I l l -  g I] = Ufll + II g II- 21If ^ g II--< 2(Ill II- Ill ^ e, II) 

~ l l f -  g II ~ I l f l l - I l l  ^ g II ~ I I f -  g II ~ 1. 

On the other  hand 

IIx,,~^,,ll ellt^'~ 
tl Hf ^ Hg It = e Iml = 7 = ellr 

hence 

IIHf - He, II = [IHf II + l ing  II- 211Hf ^ He, [I = 2 - 2e 'lr^'u-''l 

= 2(1 - e-(,r 

But  for every 0_-< x _-< 1 we have 

x 
. 5<_l -e -X<_x  

therefore  

(5) -I(11 f t1- IIf ^ g II) =< II/-ff - Hg II <= 2(11 f II- IIf ^ g II) 

which by (4) implies 

(6 )  ~ l l f -  g II = II n f -  Hg II--< 21If- g II. 

If we take f ,g  E M with I I f -  gll---- 1 and Ilfll_-> Ilgll, then by (3) 

I lf l l -  IIf ^ g II = I l f -  g 11/2 --> �89 

Hence  

(7) 

IsraelJ .  Math.  

I ]Hf -  Hg II = 2(1 - e -~"t~H;'~'")) >_-2(1 - e -l) _---�89 

By (1), (6) and (7), H satisfies the desired condit ions on M. Now,  we extend H 

by continuity to all L~(0, 1). This concludes the proof  of the theorem.  

We  prove now the proposi t ion and the lemma. 

PROOF Or PROPOSmON 2. For  every f E L,(0, 1) define: 

f+ = max {f, 0}, f -  = max { - f, 0}. 

Define now U:  Ll(0, 1)-+ Li~(0, 1) by 

2f*(2t)  0<_- t <_-�89 

U ( f ) ( t ) =  2 f - ( 2 t -  1) k - < t - < l  
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Z. = { [ ~ L ,  I f  

and define 

It is easy to see that U is an isometric imbedding.  

PROOF OF LEMMA 3. We begin with some notations.  Let  a > 0  be a real 

number ,  and let S~'~: R2---~ R be a one to one  map satisfying 

(1) S ~~ and S ~~ are measurable ,  measure-preserv ing  maps. 

(2) For  every  natural  number  m 

St"([0,  e "~ ] • [0, e '~~ 10, e~"-I" 

(The existence of such a map is an obvious and well known fact.) 

For  every n _-> 1, define a map S. : R 2- ~ R 2--, by 

2 n - I  

S. = X S (r''-' '~. 

S~ is a one  to one  map satisfying: 

(1) S. and S?, ~ are measurable ,  measure-preserv ing  maps. 

(2) For  every  natural  number  m 

S. ,X l 0' e "  x [0, e 2 ..... = ,X [0, e z'~2 .... ~]. 

Define now T~: R2"---* R by T,,=S~oS2 . . . .  S,,. 
For every n let Z~ be the following subset of L.(0, 1): 

= ~  aoo~k-w2~,kn.i, a k = ~ - ; ,  bk integers. 
k = l  

by 

W,,: Z~---. P(R 2") 

Wn([) = a~xt(~-lj,2..k,~.~ = X [0, e .~,2-]. 
k - I  

Wn satisfies the following condit ions:  

(i) For  every  f~Z~,  W.(f) is a measurable  set and ~(Wn(f))= e urn. 
(ii) For  every  f,g E Z:,  W.([^ g ) =  W.(~)N W.(g). 
(iii) Let  L :  Z , _ ~ Z .  be the canonical  embedding .  

Then  the diagram 

Z;_~ w'-r P(R 2"-') 

Z:  w$ p(R~. ) 
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is commutative. That is to say W,_~= S, WnI,. We define now the set 

M = I,_JT=~ Z ,  +, and a map V: M---~ P(R) .  For every .rE M, there is n such that 

f ~ Z ,  +. Define V(f)  = 7",,I4/,,[. 
Condition (iii) above ensures that V is well defined. Clearly M is a dense 

subset of L i(0, 1), and by conditions (i) and (ii) above, V satisfies the conditions 

required by the lemma. This proves the lemma. 

For 1 _-< p _-< 2, Lp(0, 1) is isometric to a subspace of L,(0, 1) ([9] p. 139). By a 

theorem of Mazur [11], the unit ball of L,(0, 1) is uniformly equivalent to the unit 

ball of Lp(0, 1), and to the unit ball of lp, 1 _-< p < oo. Thus we have: 

THEOREM 4. For 1 <= p <_ 2, Lp(0, 1) (respectively lp) is uniformly equivalent 

to a bounded subset of itself. 

For p = 2 this answers affirmatively a problem raised by Gorin [7] (see also [3] 

p. 48). We do not know if this theorem remains true also for 2 < p < oo. For 

general Banach spaces, it is known that every separable infinite dimensional 

C(K)  space is uniformly equivalent to a bounded subset of itself [1]. (Indeed, 

this is true for every separable Banach space containing co.) We do not know if 

there exists an infinite dimensional Banach space, which is not uniformly 

equivalent to a bounded subset of itself. 

Another consequence of Theorem 1 is the following: 

THEOREM 5. For 1 <--_ p <= 2, 1 =< q < ~, Lp(0, 1) is uniformly equivalent to a 

subset of lq (and therefore to a subset of Lq(O, 1)). 

This theorem answers a part of a problem raised by Enflo ([6] p. 2). We do not 

know if this holds also for 2 < p < oo. 

In connection with Theorem 5, it is of interest also to recall the following facts. 

By a theorem of Mankiewicz [10], Lp(O, 1) is not Lipschitz equivalent to a subset 

of lq. (A metric space X is Lipschitz equivalent to a metric space Y, if there is a 

map T from X onto Y such that T and T -~ satisfy Lipschitz condition of first 

order.) Thus we have an example of Banach spaces X, Y such that X is 

uniformly equivalent to a subset of Y, but X is not Lipschitz equivalent to any 

subset of Y. Enflo [4] proved that a Banach space X which is uniformly 

equivalent to l:, is isomorphic to 12. (This result was recently sharpened by Ribe 

[12].) Theorem 5 shows the essential role played by the assumption in Enflo's 

result that the uniform homeomorphism maps X onto 12. Another theorem of 

Enflo [5] states that Co is not uniformly equivalent to any subset of 12. It would be 

interesting to characterize all Banach spaces which are uniformly equivalent to 

subsets of 12. 
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A d d e d  in proof. R e c e n t l y  it was  s h o w n  tha t  t h e r e  a re  t w o  u n i f o r m l y  equ i -  

v a l e n t  B a n a c h  spaces  wh ich  a re  no t  i s o m o r p h i c  (I. A h a r o n i  a n d  J.  L i n d e n s t r a u s s ,  

Uni form equiva lence  be tween  B a n a c h  spaces, to  a p p e a r ) .  
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